Page 2

Unit 1 – Principles of Computer Science

The key to computer science is solving problems. In order to solve problems effectively it is necessary to understand them fully, pulling them apart until the required data types, intricate algorithms and programming language syntax start to coalesce into an efficient program that is fit for purpose.

The aim of this unit is to encourage you to transform yourself from a computer program user to a computer program developer, capable of. designing and programming smart solutions to new problems by drawing across your full study programme for the skills and knowledge required.

You will learn about computational thinking skills, the common components of different types of programming languages and the tools used to design and develop high-quality applications. In doing so, you will travel through the complete software development life cycle, honing your analytical and problem-solving skills so that you can gain employment as a junior software developer or progress to higher education and specialise further as a computing professional.

How you will be assessed
This unit is assessed through a written examination set
and marked by Pearson. The examination is two hours in length. During the supervised assessment period. learners will be assessed on their ability to apply their computational thinking skills to solve problems.

Grade descriptors

To achieve a grade, you will be expected to demonstrate these attributes across the essential content of the unit. The principle of best fit will apply when awarding grades. The maximum number of marks for this unit is 90.

To pass this unit:

You will be able to use problem-solving skills to develop a solution to given problems in context.

You will be able to use standard programming constructs to demonstrate an understanding of how data is handled in a computer program.

You will be able to construct. propose. develop and explain solutions to a problem and demonstrate an understanding of data validation and error checking.

To gain a level 3 distinction:

You will demonstrate that you can analyse and interpret problems and develop a detailed and complex solution in response.

You will demonstrate an in-depth understanding of programming constructs and a thorough understanding of how data is handled in a computer program.

Assessment outcomes

A01 Demonstrate knowledge and understanding of computing facts. terms. standards. concepts and processes.

Command words: complete. draw. give. identify. name. state

Marks: range from 1 to 5 marks

A02 Apply knowledge and understanding to communicate understanding of computing facts. terms. standards. concepts and processes.

Command words: calculate. complete. demonstrate. describe. draw. explain, produce

Marks: range from 1 to 5 marks

A03 Select and use computing technologies and procedures to explore outcomes and find solutions to problems in context.

Command words: calculate, demonstrate. develop. explain, produce

Marks: range from 1 to 6 marks

A04 Analyse data and information related to computer science in order to predict outcomes and present solutions.

Command words: analyse. demonstrate. discuss. produce. write

Marks: range from 6 to 12 marks

A05 Evaluate technologies. procedures. outcomes and solutions to make reasoned judgements and make decisions

Command words: evaluate. produce. write

Marks: range from 6 to 1 2 marks

A - Computational Thinking

Many problems are solved by experienced programmers before they even touch a computer keyboard. You should be able to use computational thinking skills to analyse a problem, identify patterns and break complex tasks down into more manageable chunks so that they become easier to tackle.

Successful computer programming relies on exercising your computational thinking skills. It is these skills which help you to investigate a problem, analyse it methodically and identify potential solutions that you can further develop into working software applications.

Computational thinking skills can be divided into four separate, but interlocking, steps:
Decomposition
Pattern Recognition
Computational Thinking
Abstraction
Algorithm Creation

Decomposition

Decomposition is the process of breaking complex ideas down into smaller, more manageable parts. Sometimes this process may be called factoring. Generally, problems which are not decomposed prove to be more difficult to solve. The process of breaking a larger problem down into a number of smaller problems often improves the chances of success. This is chiefly because it allows you to focus on just one thing at a time, permitting its details to be examined more closely.

Everyone uses decomposition every day, often without realizing it. For example, the process of making a family meal involves:

1. Choosing an appropriate recipe to follow
2. Calculating the correct quantity of ingredients for the recipe and the family size
3. Collecting appropriate ingredients
4. Preparing the ingredients
5. Cooking the ingredients in the right order, using the correct methods and for the correct duration
6. Putting the meal on plates, ready to be eaten

In this way, a single problem (making a family meal) can be decomposed into at least six ordered sub-tasks, each of which could be further decomposed, if necessary, until the steps required to solve each task are relatively straightforward to understand.

In programming, decomposition involves the following four stages:

1 Identifying and describing problems and processes

At this stage, you will list problems and processes concisely, using language that matches the problem's source. For example, if you are dealing with a financial
problem, you should accurately use terms from the financial sector. This means that you need to be familiar with the technical language used in the business sector relevant to the problem.

 2 Breaking down problems and processes into distinct steps

At this stage, you will decompose complex problems and processes into separate steps which, when taken together, can be reassembled correctly. There is no specific limit to the number of steps included or of levels to which you may decompose. You will simply continue to decompose each step until you reach an acceptable level of understanding.

For example, the problem of calculating someone's net pay (salary after tax is deducted) is decomposed into several steps:

Calculate net pay per month from annual salary
	Get annual salary
	Calculate gross pay per month
		Divide annual salary by 12
	Calculate deductions
		Calculate taxable pay
		Calculate income tax
		Calculate national insurance
	Calculate net pay per month
		Net pay is gross pay minus all deductions

3 Describing problems and processes as a set of structured steps

At this stage, you will document the problems and processes that you have decomposed as a set of structured steps. This should be straightforward enough to be followed by you or by others.

4 Communicating the key features of problems and processes to others as relevant

At this stage, you will discuss the problems and processes with others. This may include other programmers or the client. Once you have decomposed a complex problem, it is possible to start analysing the steps involved to see if there are any repeating patterns.

As a programmer, your communication skills must be flexible. You will need to adjust your delivery to meet the needs of different audiences. For example, programmers will understand technical 'jargon' while a client may not. On the other hand, the client may appreciate the use of business sector-specific language, but programmers may not. You must be able to communicate a problem to others, because having a really clear understanding of the problem is essential to your eventual success in solving it. Albert Einstein is often quoted as having said, 'If you can't explain it to a six year old, you don't understand it yourself.'

Pattern recognition

Pattern recognition is the ability to see recurring attributes within the same problems and between different problems. For example, a new problem may have features
that are similar to problems that have been previously encountered and solved. Recognising these repeating patterns can make problem solving much easier, as it can provide a good place to start. Pattern recognition is a process based on five key steps:

1 Identifying common elements or features in problems or systems. This involves:

· examining problems or systems
· listing elements or features that exist in each
· highlighting those which exist in multiple places
· recognising these as patterns.

2 Identifying and interpreting common differences between processes or problems. This involves:

· examining problems and processes
· listing elements or features that exist in each
· highlighting those that are unique to each
· recognising these as differences.

3 Identifying individual elements within problems. This involves:

· examining problems to identify the inputs, processes (including selections and iterations) and outputs that are present.

4 Describing patterns that have been identified.

5 Making predictions based on identified patterns:

· for each identified pattern, determine how it could be used in the future or how it may appear in similar situations.

Pattern generalisation and abstraction

In computing, abstraction is a concept whereby systems are split into different layers, with each layer hiding the complexity of the layer existing beneath it. This allows a programmer to use a feature without having to know exactly how it works: the irrelevant and intricate mechanics are simply 'abstracted' away or removed. Pattern generalisation happens when relationships between patterns can be identified and simple conclusions can be drawn. For example, patterns can be identified even when, at first, it does not look like there are many similarities, as shown in the photos.

[image:] [image:]

[image:] [image:]

[image:]

Task

Examine each of the photographs and list the elements which you think are common to each.

Representing parts of a problem or system in general terms

To do this, you need to identify the following.

· Variables - these are the values in a problem or system that may change, which are typically input by the user or as the result of a required calculation.
· Constants - these are the values in a problem or system that do not change often or that remain fixed for a reasonable period of time (e.g. the base rate of income tax being 20%).
· Key processes - these are the processes that are absolutely critical to understanding a problem or how a system works.
· Repeated processes - these are processes that occur multiple times within a problem.
· Inputs - these are the values entered into the system, including the units used and, potentially, any valid values or ranges (e.g. where gender is 'M' for male or 'F' for female, or where a house price has to be between £20,000 and £2,000,000).
· Outputs - this is information presented to the user in a required format, which is generally specified by the client as part of their requirements.

Task

You are going to decorate your bedroom and have a budget of £100. Initially, you will put wallpaper on your walls and then paint it. All the woodwork will need to sanded and then painted.

What are the variables and constants you will use in this calculation?
What information will you have to input to the process?
What output will be given?

Algorithm design

An algorithm is simply a set of instructions that is followed to solve a problem or perform a particular stage of processing in the overall solution, for example to validate user inputs. Programs may be made from a collection of many different algorithms.

A core part of the algorithm design is the description of the main processes, the required inputs, the desired outputs and any data storage that is required.

You now have two algorithms to create.

The first is to convert pounds sterling(GBP) into US dollars (USD) or euros(E) depending on the user’s choice.

The second one is to convert either Celsius to Fahrenheit or Fahrenheit to Celsius depending on the user’s selection.

For each task you will need to follow these steps and provide evidence of having done so.

Step 1: Understand the problem

Make sure that you fully understand the problem you have been asked to solve.

You need to convert an amount of pounds into dollars or euros (D or E), depending on the user's choice.

You need to convert between two different temperature measurements.
Step 2: Identify the inputs

What will the user input?
What type of data will this be?

Step 3: Identify the processes

What calculations will need to be performed?
Are there any special values you need to know?

Step 4 : Identify the data storage

This would mean thinking about storing data that would be needed next time the solution is used.

If this is needed, what type of data do you need to store?

Step 5: Identify the outputs

What information must be output?
In what format must the output be shown?

Step 6: Collect your notes

Use a quad diagram to represent the inputs, processes, data storage and outputs required.
Input Required
Output Required
Data Storage Required
Processes Required

The quad diagram is a simple way of starting to organise your thoughts while exploring a problem and starting to assemble a potential solution.

The processes you have identified will need to be developed into more detailed algorithms before you can form a potential solution.

In this example, we have listed all the inputs and outputs and noted their formats (particularly the quantity of decimal places to use) and any validation that is required. When specifying formats it is typical to use 9 for a numeric digit, A for an alphabetic character and X for any character.
Task

Using the four elements of Computational Thinking as your headings, produce a solution to this problem:

Jane needs to produce several charts which show the sales figures for her department. She would like to be able to select a range of dates and be able to select a range of products or all of the products. She will need to decide on the type of data which will be used and how it will be presented.

B - Standard methods and techniques used to develop algorithms

Because they can be complicated to communicate verbally, algorithms are best represented using a number of different design tools. This section looks at two of the more common tools that can be used - structured English (pseudocode) and flowcharts.

Structured English (pseudocode)

Pseudocode is an informal English-like outline of the algorithm which can be converted to the target programming language.

Pseudocode should avoid commands or syntax that are found only in a particular programming language. Instead, standardised terms from English are used to specify particular types of actions. A categorised list of these is shown below:

	Operations
	Decisions
	Repetition

	BEGIN
END
INPUT
OUTPUT
PRINT
READ
WRITE
	IF
THEN
ELSE
ELSEIF (ELIF)
WHEN
	FOR
REPEAT UNTIL
WHILE
WHILE NOT

This simple pseudocode show the set of instructions to check if someone’s age is between 18 and 60 (inclusive)

BEGIN
	REPEAT
		Min=18
		Max=60
		OUTPUT “What is your age?”
		INPUT age
		IF age < min OR age> max THEN
			OUTPUT “Error – age must be between 18 and 60”
		ELSE
			OUTPUT “Age is accepted”
		ENDIF
	UNTIL age>=18 AND age <=max
END

The indentation used in writing pseudocode is to make clear the sections in which the code is to be carried out. It also makes the code easier to read and understand.

Interpreting pseudocode

To succeed in this unit, you must be able to not only produce pseudocode to solve set problems but also be able to correctly interpret existing pseudocode statements so that you can describe the tasks or processes they are performing.
Apply processes to calculate outcomes

Interpreting existing pseudocode involves applying the processes that are shown to determine potential outputs and actions, which will help you to understand the true purpose of the pseudocode presented. You should also be able to evaluate the structure and logic of the pseudocode provided against the original requirements: that is, does the solution meet the target user's needs?

Evaluate the structure and logic of given code against given requirements

As part of any development, you should try to create solutions that demonstrate effectiveness and efficiency of code and identify and fix any errors that may exist within the code.

Suggest improvements to logical structures and processes

Finally, you should be able to suggest improvements to logical structures and processes. Try to interpret the line-numbered pseudocode shown below and decide on what it is trying to do.

	1
	BEGIN

	2
		INPUT value

	3
		total = 1

	4
		counter = 1

	5
		REPEAT

	6
			total = total * counter

	7
			Increment counter

	8
		UNTIL counter > value

	9
		PRINT total

	10
	END

Task

Complete this table which is called a TRACE TABLE because it traces the values of each variable as the set of instructions are executed.

	value
	4
	
	
	

	counter
	1
	2
	3
	4

	total
	
	
	
	

A programmer will need to examine the code and aim to be as efficient as possible. Any errors will need to be corrected and the code will then need to be re-tested.

The programmer discovered a problem with this code. Can you identify it?

	1
2
3
4
5
6
7
8
9
10
	BEGIN
	INPUT value
	total = 1
	counter = 1
	REPEAT
		total = total * counter
	UNTIL counter > value
	Increment counter
	PRINT total
END

What does the programmer need to do in order to correct this code?

The act of detecting and correcting errors in code is called debugging.

Work through the following exercises.

	Line
	Code
	Explain each line and purpose

	1
2
3
4
5
6
7
8
9
10
	BEGIN
	INPUT value
	IF value >= 60 THEN
		PRINT “Passed”
	ELSE
		PRINT “Failed”
	ENDIF
END
	

	Line
	Code
	Explain each line and purpose

	1
2
3
4
5
6
7
8
9
10
	BEGIN
	total = 0
	counter = 1
	WHILE counter <= 10
		INPUT grade
		total = total + grade	
	ENDWHILE
	Average = total / 10
	PRINT average
END
	

	Line
	Code
	Explain each line and purpose

	1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
	BEGIN
	total = 0
	counter = 0
	input grade
	WHILE grade NOT = 0
		total = total + grade
		counter + counter + 1
	ENDWHILE
	IF counter > 0
		average = total / counter
		PRINT average
	ELSE
		Print “No grade input”
	ENDIF
END
	

	A chef working in a gastropub writes a program to help her keep track of the recipes used in the kitchen. Each recipe has a type which may be a page referenced in a cookery book, cut-out from a magazine, link to a web page, a hand-written note or printout.

When a new recipe is entered, the system allocates a reference based upon the type. The chef has written some pseudocode to show the logic for how this reference is made (with comments at the end of some lines after single quotes).

	BEGIN
	INPUT type					#From a combo box
	IF type = “page reference”
		Ref = “PR”				#page reference
	ELSE
		Ref = “ CO”				#cut out
	ENDIF
	IF type = “link to a web page”
		Ref = “WP”				#link to web page
	ENDIF
	IF type = “hand-written notes”
		Ref = “HW”				#hand-written notes
	ENDIF
	Ref = Random()				#add a random number to Ref
END

This code contains two errors, what are they and how might they be corrected?

1. Error is …
2. Error is …

Flowcharts using standard symbols

A flowchart is a graphical representation of the algorithm, showing its actions and logic through a set of standardised symbols which are standardised by the British Computer Society (BCS).

A flowchart is a diagram that represents a set of instructions. Flowcharts normally use standard symbols to represent the different types of instructions. These symbols are used to construct the flowchart and show the step-by-step solution to the problem.

Common flowchart symbols

	Name
	Symbol
	Usage

	
Start or stop
	Start/Stop

	
The start end points of the sequence.

	
Process
	Process

	
Usually a calculation

	
Decision
	Decision

	
A decision which will have a yes or no reply.

	
Input or output
	Input/Output

	An input is any data sent to the computer. An output is data sent from the computer.

	
Connector
	

	Used to jump from one section of the flowchart to another

	
Direction of flow
	

	Straight lines with arrows indicate the flow of flowchart logic.

Converting pseudocode to flowcharts. The first one has been done for you.

	1
	BEGIN

	2
		INPUT value

	3
		total = 1

	4
		counter = 1

	5
		REPEAT

	6
			total = total * counter

	7
			Increment counter

	8
		UNTIL counter > value

	9
		PRINT total

	10
	END

[image:]YES
NO

Now create flowcharts for all previous flowcharts. NOTE: consider what the difference is for a flowchart which depicts a WHILE….ENDWHILE and one which depicts a REPEAT…UNTIL.
When you have created flowcharts for all of the pseudocode examples attempt this assessment test:

Read through the following scenario and using computational thinking skills (decomposition, pattern recognition, pattern generalisation and abstraction) solve the problem using standard methods and techniques such as pseudocode and flowcharts.

An on line payment system, myBill. allows users to effortlessly pay for a variety of website purchases on the internet. Each myBill customer can link their account to a bank account, debit or credit card. Amounts are debited from the preferred funding source to create a myBill balance. Usually, myBill only takes what is needed to pay a transaction so the myBill balance remains at zero. However, sometimes a website will refund part of a transaction leaving the myBill balance in credit. When this occurs any subsequent purchase has to use the myBill credit first and then subtract the difference from the preferred funding source.

A simulation of this process is required for demonstration purposes where users can select their preferred funding stream, process a transaction (payment or refund) and keep an accurate running myBill balance. Each funding source set up should have its own balance and if a myBill transaction occurs when the preferred funding stream is unable to provide sufficient money, then the transaction should be politely refused.

Plan:

Do I fully understand the nature of the problem? Am I clear about what I am being asked to do?
· Do I know how to apply computational thinking skills to solve the problem?
· Am I able to use standard methods and techniques, such as pseudocode and flowcharts, to solve the problem?
Do:
· I know what it is that I am doing and what I want to achieve.
I can use a variety of computational thinking skills to analyse the problem and break it down into much more manageable chunks.
· I will start from the beginning of the scenario and work through to the end.
Review:
· I can explain the computational skills I have used.
· I can explain how pseudocode and flowchart solutions both help to represent the algorithms I have created.
· I can explain how I would approach the hard elements differently next time.

For each of these tasks, create a piece of pseudocode, flowchart and Python program code.
1. A program which will display your name, address, postcode and telephone number
2. A program which will prompt the user to enter the length and width of a room. It will also prompt them to enter the cost of carpet in £ per sq. m. The program should then calculate and display the area of the room and the cost of carpeting it.
3. A program to allow the user to input the cost of a meal. It should then calculate the VAT at 20% and the tip at 18%. These should then be displayed along with the total cost.
4. A program to accept to numbers from the user, a and b. It should then calculate and display the results of these arithmetic operations:

The sum of a and b
The difference when b is subtracted from a
The product of a and b
The quotient when a is divided by b
The remainder when a is divided by b
The result of log10a
The result of ab
5. A program which allows the user to enter the diameter and height of a can. The program should then calculate and display the volume of the can.

C - Programming Paradigms

In this section, you will learn about standard structures and conventions (programming paradigms) used to build and develop accurate, efficient and effective computer code to fulfil identified criteria and solve problems.

Handling data with a program

Data is typically represented in a program using an identifier. Many types of identifier are used in programs, but the most common types are constants (an identifier representing a value that will not change while the program is running) and variables
(an identifier representing a value that may change while the program is running).

	Identifier - a programmer­ friendly name which represents a value stored
in the computer's RAM. Before the use of identifiers, a programmer would need to know the actual memory address of a value in order to
access it.

	Example are:
C = 20
Name = “John Smith”
Wage = 4.54

Good practice is to use meaningful names.

Some identifiers are variables and some are constants.

Variables are used to represent data which can change. Constants represent fixed unchanging values.

Example:

A program to calculate the area of a circle will use the formula:

Area = Pi * radius * radius

The data ‘Area’ and ‘radius’ will vary since different circles will have different sizes. The value of ‘Pi’ will remain constant.

Defining and declaring constants and variables

In order to create (or declare) an identifier, whether it is a constant or a variable, you usually provide the programming language with two things: a name and a data type.

Almost all programming languages support the concept of data types. A data type is used to define what kind of value a variable or constant can store, what operations can be performed upon it and its behaviour within the program. Most programming languages offer many different data types for the programmer to use.

You should always choose a sensible and meaningful name. For example, a good variable name for storing the user's name would be 'username'. Some names cannot
be used because they are reserved by the language for a particular use, typically because they are command words. These 'reserved' words vary between different programming languages, so be careful.

Most programmers will declare the variable and constant identifiers they use ate the start of the program or subroutine.

In Python, some of the data types used are:

Example						Data Type	

x = "Hello World"					str	
x = 20							int	
x = 20.5						float	
x = 1j							complex	
x = ["apple", "banana", "cherry"]			list	
x = ("apple", "banana", "cherry")			tuple	
x = range(6)						range	
x = {"name" : "John", "age" : 36}			dict	
x = {"apple", "banana", "cherry"}			set	
x = frozenset({"apple", "banana", "cherry"})	frozenset	
x = True						bool	
x = b"Hello"						bytes	
x = bytearray(5)					bytearray

Some variables are declared to be ‘global’ which means they can be used throughout the program.

Other variables may be declared as ‘local’. This is often occurs when the variable is being used inside a subroutine or function.

Naming conventions

Apart from selecting meaningful identifiers, you will find that many different naming conventions exist for creating identifiers, although these will vary depending on the
programming language you are using.

Two widely popular techniques that are used by industry professionals are snake_case and camelCase. The table below demonstrates some variables named using these two naming conventions.

	Identifier used for

	snake_case
	camelCase

	A user’s password
	user_password
	userPassword

	Employee’s net pay
	net_pay
	netPay

	An address postcode
	post_code
	postCode

The distinction between the two methods should be obvious.

Task

1. Write two programs in Python which will accept you name, address, date of birth and age. Use snake_case in one and cameCase in the other.

2. Research Python and one other programming language to find out about the rules of the language syntax of each one. For example, in Python commands such as print and input must be in lower case.

This link will take you to a good guide on naming conventions.

https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/naming-guidelines

Arithmetic operations

The majority of algorithmic solutions that you design will involve the use of arithmetic operations. These can be categorised as mathematical operators, relational operators, Boolean operators or date/time.

Operators are special symbols which tell the program to carry out a specific arithmetic, relational or logical operation.

Operators have to be used in a specific order of precedence. You may be familiar with BIDMAS, BODMAS or BEDMAS. They mean the same thing. Anything inside BRACKETS is calculated first, then DIVISIONS, MULTIPLICATIONS, ADDITIONS and finally SUBTRACTIONS are carried out in that sequence.

Using this guide, calculate:

1. 4 * 2 – 3 + 4
2. 25 / 5 * 2 + 6 + 8 – 5
3. (42 / 7) -2 * 3 + 5

In addition to these 4 arithmetic operators there are also modulus division and integer division.

The symbols used vary from one language to another.

	Modulus division
	Integer division

	MOD
%
Modulo
Rem
	DIV
//

Modulus division will simply divide one number by another and return the remainder value. For example, 20 MOD 3 will equal 2. 3 into 20 is 6 (6 * 3 = 18) remainder 2.

In Python, try:

print (40 % 6)
print (60 % 10)
print (22 % 3)

Integer division will divide one number by another and the result will be an integer value showing the number of times one value will go into another. For example, 20 DIV 3 will return 6 since 3 will go into 20 6 times.

In Python, try:

print (40 // 6)
print (60 // 10)
print (22 // 3)

Relational operators

These types of operators define the relationship between two different values. Generally speaking, there are six operations that you need to be familiar with.

	Relational operator
	Common symbol usage

	Is equal to
	==

	Is NOT equal to
	!=

	Greater than
	>

	Less than
	<

	Greater than or equal to
	>=

	Less than or equal to
	<=

Task:

Design either a program or pseudocode which uses the above symbols to output a suitable message for each one.

There are also Boolean operators which use AND, OR, NOT.

Date/Time

Many programming languages that support date and time data types use a variety of functions and operators to perform basic arithmetic on them. For this reason, it is difficult to identify particular operators for performing calculations with dates and times. However, the following code demonstrates the use of simple date/time arithmetic in Python through the use of the common + and - operators.

Date/Time arithmetic in Python
import datetime

Grab date and time
today = datetime.date.today()
now = datetime.datetime.now()

Specify differences
daydiff1 = datetime.timedelta(days=14)
daydiff2 = datetime.timedelta(weeks=3)
timediff1 = datetime.timedelta(hours=4)

Display calculated differences
print (“Two weeks from now is:”, today + daydiff1)
print (“Three weeks ago was:”, today-daydiff2)
print (“In four hours time it will be:”, now+timediff1)

End of code

Built-in functions

Almost all programming languages have built-in library functions which programmers can use when solving complex problems. These allow the programmer to perform common but crucial tasks on data, such as formatting its appearance, finding the length of a string or the square of a number. You can also download and install third­
party functions from reputable websites to expand programming languages.
Built-in functions are grouped by category: arithmetic functions, string handling functions or general functions.

Arithmetic functions

Arithmetic functions perform mathematical operations.

Random

Random numbers are important for generating test data, particularly for statistics and probability applications and introducing the element of unpredictability into a program, e.g. for simulation or games of chance such as dice, roulette or card-based games such as pontoon or poker.

Most programming languages support the concept of pseudorandom numbers. These numbers are often generated (through hardware or software algorithms) via a process of manipulating seemingly random events (real-time clock readings, input/output activity etc.) to generate a pool of random values.

It is quite common for the pseudorandom number generator (PRNG) to be given an initial seed value that acts as a starting point for the creation of the pseudorandom number pool. If multiple starting points are chosen too quickly in succession, e.g. inside a short loop, it is possible for a PRNG to generate the same sequence of random numbers, which essentially defeats the objective, so caution is advised.
Most programming languages have built-in functions which return a random number within a requested range.

A sample Python program for generating random numbers.

import random
for x in range(10):
 print (random.randint(1,21)*5)

Basically this code will generate a random number between 1 and 20, and then multiply that number by 5. So not only will every number printed be a multiple of 5, but the highest number that can be printed is 100 (20*5=100).

Play around with the code yourself and see if you can generate a random number between 1-100 where every number generated is a multiple of ten!

Range

Although many languages have similar functions, Python's® Range function is an example of a good utility function. Despite being able to arithmetically generate a list of numbers, its uses can be quite general-purpose, especially when used in conjunction with FOR loops.

Range is a flexible function, accepting a variety of different arguments as shown in the following code:

Range finction examples

One argument generates numbers from 0 to 5
for i in range(6):
 print(i)

Two arguments generate numbers from 2 to 7
for i in range(2, 8):
 print (i)

Three arguments , generates numbers from 1 to 10 in steps of 2
for i in range(1, 10, 2):
 print (i)

Going backwards, counting down from 10 to 0 in steps of 2
for i in range(10, 0, -2):
 print (i)

Try this next code out to see what it does.

More complex example of Range function in Python

days = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
size=len(days)

for counter in range(0, size):
 print (days[counter])

Now create a program which has a list of the 12 months of the year and prints each one separately.

Round

An important objective when dealing with any problem involving money or quantities is the ability to round decimal numbers to a desired number of places or simply round to an integer (whole number).

As you might expect, most programming languages contain built-in functions to perform a simple rounding function although you should take care with numbers such as 1.5 as some rounding functions will round up and others may unexpectedly round down.

The following Python code shows how rounding works:

Python rounding

print ("round(70.23456) : ", round(70.23456))
print ("round(56.659,1) : ", round(56.659,1))
print ("round(80.264, 2) : ", round(80.264, 2))
print ("round(100.000056, 3) : ", round(100.000056, 3))
print ("round(-100.000056, 3) : ", round(-100.000056, 3))

Truncation

When we truncate a number we simply ‘chop off’ the decimal part leaving only the integer.

String handling functions

Although strings are simply a collection of characters, they may still require processing as part of any potential solution. This task is commonly known by programmers as string handling. Programmers often have the need to perform certain operations on strings and most high-level languages have built-in library functions to help.

Common tasks are shown below, with Python code examples showing their implementation.

Find the length of a string in characters

Code to find and display the number of characters in a string
month = "January"
characters = len(month)
print ("The number of characters in the text", month, " is ",(characters))

Examining single characters

Code to find and display each character in a string
month = "January"
for counter in range(0, len(month)):
 print (month[counter])

Play around with both of these codes.

Substrings of strings

#A demo of substring by extended slice

a_string = "Get Python String Substring"
print("Original String:", a_string)
substr = a_string[4:17]
print("Substring:", substr)

Try to work out what these programs do. Play around with the code.

#A demo of substring by extended slice with step parameter

a_string = "Get Python String Substring"
print("Original String:", a_string)
substr = a_string[1:27:2] # What does this line do?
print("Substring with 2 steps:", substr)

Concatenation

Concatenation is the joining of string data to form larger string data.

Joining two strings

month = “January”
days = “has 31 days”

print (January,” “,days)

Join two strings into one string

month = “January”
days = “has 31 days”

joined = month + days

print(joined)

Notice this concatenation does not separate the two pieces of text.

month = “January”
days = “has 31 days”

joined = month + “ “ +days
print(joined)

Task

1. Write a program to input your name as separate variable and then join them together into one vatiable

String conversion

It is important to understand that numeric values can be stored as integers (if 'whole')
or floating point (if they need a decimal part) or even as a string. If the number is stored in a string it is generally impossible to perform arithmetic on it.

Sometimes this might be ok; a telephone number typically only has digits and could safely be stored in a string as it is unlikely we would want to add or subtract with it.

However, sometimes we may legitimately want to convert from a number (integer or floating point number) to a string or vice versa. Most programming languages do this via built-in functions or data type casting.

Integer/floating point to string

Sometimes it is necessary to convert a numeric value (integer or floating point) to a
string representation. This may happen because we want to format it in a particular
way, e.g. as currency with a £ or $ symbol prefixed or simply to store it in a text file.

Example

Converting numbers to strings in Python

Store two numbers

num1 = 1.4
num2 = 99

Convert to string using the str() function

string1 = str(num1)
string2 = str(num2)

To prove they are strings we can carry out string operations on them

print (“The first string is “, string1, “ which is “, len(string1), “ characters long”)
print (“The second string is “, string2, “ which is “, len(string2), “ characters long”)

End of program

Converting strings to numbers
Python code to show how strings containing numeric values can be converted to numbers
string1 = “12”
string2 = “3”

print (string1 + string2)	 # concatenates the two strings

num1 = int(string1)
num2 = int(string2)

print(num1+num2)		# now prints the sum of the two numbers

string3 = “10.50”
string4 = “8.75”

num3 = float(string3)
num4 = float(string4)

print (num3 + num4)

End

General functions

Most programming languages that execute on the command line interface (CLI)
or shell have functions or commands that allow the user to input data and output messages. These are both fairly fundamental objectives for any programmed
algorithm and you are certain to encounter them in any programming language.
The following examples focus on functions found in the Python programming
language.

Input

Python's input function is used to store user input that has been keyed. It does so by displaying a user prompt, waiting for keyboard input and then storing this in a specified variable in RAM once the enter/return key is pressed.

Simple use of input in Python
age = input()

Now input with prompt
yourage = input(“Please enter your age “)

Print
Python also has the ability to display messages on the CLl/shell using the Print
function. The example shown in below uses the ‘print’ function to fully explain what information the user is seeing.

Simple prompted input
username = input("Enter your name: ")
length = len(username)

print ("Hello, ", username, '!', sep='')
print ("Your name is ", length, " characters long.", sep=' ')

You should notice that the 'sep' argument is used to specify the character to use between the different parts of the print string. If it is not specified, the default separation is a single space.

File operations

Open, close, read and write

Designing any software solution typically involves dealing with persistence of data. A computer's data storage in its random access memory (RAM) is said to be volatile – it is lost when power is removed, that is, when the computer is switched off.
This means that it is fine to store data in RAM while the program is running but to have data existing between program uses, especially when the power is removed, requires the use of a more permanent (non-volatile) form of data storage, for example magnetic storage, such as a hard disc, or a universal serial bus (USB) flash drive.

The most common form of non-volatile data storage is the data file and these are supported by most programming languages, including Python and C#.

Basic Python data files can be explored using just four main built-in functions:

· Open - opens a file
· Read - reads data from a file into RAM
· Write - writes data from RAM to a data file
· Close - closes a file.

The example below demonstrates the creation of a simple data file (in
ASCII text file format) and its reading back into the RAM to verify its contents.

Simple example which creates and then reads a data file

Open a new file for writing
myfile = open("demo.txt", "w")

Write some data to the file
myfile.write("This is my test data");

Close the opened file
myfile.close()

Re-open the file
myfile=open("demo.txt", "r")

Look at the data in the file
message = myfile.read()

Print contents
print('Data stored in the file was: ', message, sep=' ');

Close file
myfile.close()

End
Data Validation

Validation is concerned with the acceptability of data. This is not the same as the accuracy of data. The accuracy of data can only be tested by verification.

Example

I have to enter my birthdate in the format dd/mmm/yyyy

So I enter:

		21/MAR/1987

This is a valid date so it is acceptability.

However, it is inaccurate and I will need to check it to verify its accuracy.

Can you think of another method of verifying the accuracy of input data?

Validating data

You may have heard of the expression 'garbage in, garbage out' or GIGO, which suggests the rule that the quality of output is directly dependent on having sensible inputs. Validation is the process that attempts to prevent nonsensical inputs.

Although the use of checkboxes, buttons and list boxes limit input choices, most programs still require validation to handle the probability of problematic input from the user, particularly when using traditional keyboard input.

Validation check techniques

The term "constraints" is often used to describe limiting factors which can be used to validate user inputs. Although constraints are often available as special functions, e.g. NotNull, NotBlank, etc. in certain programming languages, they can be created using standard validation check techniques, as shown throughout the following section. In this section, you will look at a variety of different validation check techniques that programmers can use to validate their programs.

It is very important to build validation rules into a solution. They will check whether different inputs are sensible and prevent inaccurate results, run-time errors or fatal application crashes.

Range check

A range check assesses whether data entered is within a valid minimum-to-maximum range. For example, if a customer is limited to buying up to 10 of a particular item then the valid range would be 0 to 10. Input outside this inclusive range would be considered invalid.

Sample Python code to show Range Check Validation

Prompt for a number

monthnum = int(input("Please enter a valid month number "))
while monthnum <=0 or monthnum>12:

 print (monthnum, " is invalid please enter again")
 monthnum = int(input())

print ("Thank you ", monthnum, " is valid")

End

Length check

A length check assesses how many characters have been entered. Some very well known inputs have limited length, for example:

short message service (SMS) texts are limited to 1 60 characters

tweets were originally limited to 140 characters (derived from SMS length minus 20 characters for the user's unique address).

Below is a piece of Python code which will require that the user enters a password containing at least 8 characters.

Simple code to check the length of a piece of text

Get new password

password = input("Please enter new password which must have at least 8 characters ")

while len(password) < 8:
 print("Password must have 8 or more characters. Please re-enter ");
 password = input()

print ("Thank you, your password is valid")
End

Type check

A type check assesses whether the data entered is of the correct data type. For example, if the user has to enter their age, this would require the input to be an integer (a whole number). If input of incorrect data types is not prevented by the programmer, it can cause a fatal run-time error.

Sample code to validate input contains only numerals

validInteger = False

while not validInteger:
 age = input('How old are you? ')
 if age.isdigit():
 validInteger = True
 else:
 print('You must enter a valid number')

print('You are ' + str(age))

End

This code uses multiple validations

isFourDigitPassword = False
oldPassword = '2154'

while not isFourDigitPassword:

 password = input('Enter a new PIN: ')
 if len(password) == 4 and password.isdigit() and password != oldPassword:
 isFourDigitPassword = True

 else:

 print('Your PIN must be 4 digits and not the same as your old PIN')

print('Your PIN entered is: ' + password)

End

Format check

A format check assesses whether the data entered is in the correct format: for example, whether a string containing a UK postcode follows the format 'PO1 3AX'.

· PO is the area, such as GL (Gloucester) - this has to be capitals, alphabetic, 1 or 2 characters.
· 1 is the district, usually between 1 and 20 per area - this has to be up to 2 numeric digits.
· 3 is the sector, usually covering up to 3000 addresses - this has to be 1 numeric digit.
· AX is the unit, usually covering up to 15 addresses - this has to be capitals, alphabetic, 2 characters.

Check digit

A check digit is a single character (usually a numeric digit) derived from an algorithm
which is performed on a piece of data. The algorithm is designed to only generate
this particular digit if the data (e.g. a string of characters) has exactly those characters and they are arranged in that specific order. Any incorrect character or swapping of character positions generates a different check digit value and fails the test. Check digits are used mostly to detect errors in inputted values such as barcodes, bank account numbers and software registration codes.

An ISBN (International Standard Book Number) uses a check digit. Until the end of 2006 an ISBN consisted of 10 digits. From 1st January 2007 an ISBN is 13 digits in length. An ISBN can be broken down into sections that have a discrete meaning. A couple of examples will show these sections. The first example is the book “Taking Chances”, published in 2003 by Oxford University Press and written by John Haigh. Its ISBN, shown as a simple string of 10 digits, is 0198526636. We would see this number above the barcode on the back cover and it would look something like:

[image:]

The number ‘6’ at the far right is called a ‘check digit’. It is created by using a standard technique.

Check digit calculation

The check digit is calculated by taking the nine digits comprised of the group identifier, publisher identifier and the title identifier. The first, leftmost, digit of the nine is multiplied by ten, then working from left to right, each successive digit is multiplied by one less than the one before. So the second digit is multiplied by nine, the third by eight, and so on to the ninth which is multiplied by two. Each of the nine products calculated is added together. The resulting number has the number 11 taken from it as many times as may be wholly done. The check digit is eleven minus the remainder from this casting out of elevens. An example will show this. The calculation is performed on the first example book, where the first three identifiers gives the digits 019852663.

Calculating a Check Digit

	ISBN
	0
	1
	9
	8
	5
	2
	6
	6
	3

	Weight
	10
	9
	8
	7
	6
	5
	4
	3
	2

	Product
	0
	+9
	+72
	+56
	+30
	+10
	+24
	+18
	+6

Add the results together gives 225

Use Modulo 11

225 DIV 11 = 20 remainder 5

11 – 5 = 6

The check digit is thus 6.

The possible values for a check digit calculated by this procedure, called modulus 11, is from zero to ten. In order to show a check digit of ten as one character, the convention is adopted of using the letter "X" to stand for a ten, like a Roman ten. That is why you may sometimes see a 10-digit ISBN that ends in an "X" rather than a numeric digit.

Check digit validation

It is possible to validate a complete ISBN, one that includes its check digit, by a similar procedure to calculating the check digit. Simply perform the same calculation, adding the check digit to the calculated product with a weighting of one. If the check digit should be the letter X, then it takes the value of 10. When the division by eleven is performed, the remainder will be zero for a valid ISBN. Please note that the validation being performed here is to check the correctness of the check digit for the rest of the numbers and their place in the number. This does not mean, necessarily, that this ISBN has ever been issued to a book, or that it is valid in a number of other ways.

Validating a Check Digit

	ISBN
	0
	1
	9
	8
	5
	2
	6
	6
	3
	6

	Weight
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1

	Product
	0
	+9
	+72
	+56
	+30
	+10
	+24
	+18
	+6
	+6

The sum of the products is 231.

Divide this by 11 gives 21 remainder 0. Zero remainder means valid ISBN.

Error handling and reporting

Many modern programming languages have syntax features which are designed
to handle run-time errors when they occur. If they did not have these features, the application would crash or lock unresponsively.

A common error handling technique is the use of the 'try...throw. ..catch' expression
that can be found in many languages, including C++, Microsoft C#, Oracle JavaScript and PHP. This error handling technique works by 'trying' an operation, 'catching' any possible errors and (optionally) 'throwing' an appropriate exception.
This approach prevents the application from failing the operation in an uncontrolled way, as this would cause the application to crash completely.

Post-check actions

Error reporting is an important aspect of software development. It may be directed towards the user, by telling them that they have made a mistake, or towards the developer, so that they can understand where a program has encountered an error and the nature of this error.

Common techniques for error reporting include:

· Displaying an error message and/or code
· Appending the error details to an electronic log file which can be viewed separately
· Sending an email to the developer which includes details of the error

Control structures

The algorithms that control programs are built using a combination of 3 basic programming building blocks or control structures.

These are sequence, selection and iteration.

1. Sequence – the sequence of instructions are executed one after another with no instruction being missed and none being repeated.
2. Selection – some instructions are only executed when a particular set of criteria are met.
3. Iterations – instructions are repeated a number of times until some criteria is no longer true. Iterations are frequently called loops.

Loops

By their nature, loop control structures allow parts of an algorithm to be repeated.
Although infinite loops are designed to repeat forever, most loops have controlling
conditions that tell the loop when to stop or keep repeating. Loop conditions are
formed in a similar way to those used in branches.

Most programming languages support a number of different loop types but, in general, they can be classified as being pre- or post-conditioned. Pre-conditioned loops, such as FOR and WHILE, have a controlling condition that is situated before the actions which need to be repeated. If the controlling condition is not true, the loop will not work and none of the instructions will be executed.

	FOR Loop
	WHILE Loop
	REPEAT Loop

	FOR counter = 1 to 20
	OUTPUT counter
NEXT
	Counter = 1
WHILE counter <= 10
	OUTPUT counter
	Increment counter
ENDWHILE
	Counter = 1
REPEAT
	OUTPUT counter
	Increment counter
UNTIL counter > 10

Branches

Branches allow you to make decisions within an algorithm, which are usually based on whether a specific condition is true or false.

Conditions are built from combinations of identifiers, literals, relational operators and logical operators. For example, to order a holiday online, you may have the follow· condition, as shown in this table.

	age >= 18 AND validDebitCard = true

	age
	>=
	18
	AND
	validDebitCard
	=
	true

	Identifier
variable
	Relational
operator
	Numeric literal
	Logical operator
	Identifier variable
	Relational operator
	Boolean literal

The pseudocode for this would be:

BEGIN
	IF age >= 18 AND validDebitCard = true THEN
		OUTPUT “Holiday booked”
	ELSE
		OUTPUT “Cannot book holiday at this time”
	ENDIF
END

Representing this as a flowchart:

No
Yes
START
Is age >= 18
AND
validDebitCard
= True?

OUTPUT
“Holiday Booked”
OUTPUT
“Cannot book holiday at this time”
STOP

Sometimes we may need to have multiple branches within the same part of an algorithm, particularly when there are several TRUE possibilities.

For example, a teacher’s grading system has the following grades based on marks:

<10 Fail

10 – 30 D
31 – 50 C
51 – 70 B
>70 A

Using pseudocode we might get:

BEGIN
	IF mark < 10 THEN
		OUTPUT “Fail”
	ELSEIF mark >=10 AND mark <=30 THEN
		OUTPUT “D”
	ELSEIF mark <=31 AND mark <+50 THEN
		OUTPUT “C”
	ELSEIF mark >=51 AND mark <=70 THEN
		OUTPUT “B”
	ELSE
		OUTPUT “A”
	ENDIF
END

Task

Produce the flowchart for the above pseudocode and then create and test Python program.

Function calls
A function is a separate block of code that performs a specific job. Some programming languages define a function by stating that it should return a value of some kind, differentiating it from a procedure which merely performs an action. Many languages, particularly those in the C family, make no such distinction - they are simply 'Functions'.
Functions, also called modules, subroutines or procedures, depending on the programming language, are responsible for performing a single task and are typically somewhere between 5 and 50 lines of code long.
The use of such functions means that code tends to be easier to write, easier to read and debug, reusable through multiple solutions and allows a single application to be divided and worked on by several programmers simultaneously (saving development time).
Functions are usually defined in a separate section of the code and are called from the main body of the program.
Usually parameters or arguments are passed to the function which will use those parameters to carry out its process and then return a result.
A simple Python program using a Function:
This function will have a name passed to it
def greet(name):
	print("Hello, " + name + ". Good morning!")

End of Function

Main body of program

greet("Graham")

End

Data structures
A data structure is a technique used to collect and organise data items into a formal structure, which allows more efficient processing. Although the availability of certain data structures varies between different programming languages, many are very common. These include strings, arrays (one and two dimensional), stacks, queues and records.
Sometimes, it is possible to program more efficiently through the selection and use of specific data structures, especially when combined with iteration (loop) control structures. Software developers need to become familiar with many data structures as they learn about different programming languages.
A data structure is used to store a collection of characters with one character minimally requiring one byte of RAM.
String (or text)
Strings may be affixed length (e.g. 10 characters long) or use a special 'terminator' character to mark their end. This may mean that a string will require an additional character but it allows them to be dynamic in length.
Planet
	0
	1
	2
	3
	4
	5

	E
	A
	R
	T
	H
	#

Planet[2] would be ‘R’.
Array(one dimensional)
An array is a group of items which are all of the same data type. So we could have an array of elements each one of which is someone’s name.
Typically, an array will store a group of data items which are all of the same type although all data types are acceptable.
For example, an array storing the months of the year might look something like this:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

	Jan
	Feb
	Mar
	Apr
	May
	Jun
	Jul
	Aug
	Sep
	Oct
	Nov
	Dec

A benefit of storing data in ana array is that it is possible to use one array name with its item location to access each and any element. Arrays can also be easily sorted and searched.
Task:
Write a Python program to create an array of 5 integers and display the array items. Access individual elements through indexes.
[image:]
Simple Python code
array_a = [1, 3, 5, 7, 9]		# Use square brackets to declare the array
print (array_a[2])
print (array_a[1:3])

Array(two-dimensional)

Two-dimensional arrays store multiple rows of data.

Suppose we wanted to store the highest daily temperatures over 3 weeks. We could create an array:

	
	0
	1
	2
	3
	4
	5
	6

	0
	12.50
	10.45
	12.30
	14.60
	17.70
	11.20
	12.50

	1
	12.22
	11.00
	10.00
	20.00
	21.00
	14.00
	15.50

	2
	13.00
	14.00
	14.50
	14.60
	12.30
	14.00
	14.60

By using the day and week indices, we can access each element in the array.

Record(or structure)

A record is similar to an array but differs in that it can store a mix of data types.

Consider a student’s record:

This may well consist of:

Admin number			Integer
Surname			Text
Firstname			Text
Telephone number		String
Date of birth			Date

Lists

These are usually called linked lists and consist of data items connected to each other in a ‘chain’ using pointers.

Linked List is a sequence of links which contains items. Each link contains a connection to another link. Linked list is the second most-used data structure after array. Following are the important terms to understand the concept of Linked List.
Linked list can be visualized as a chain of nodes, where every node points to the next node.

[image:]
Linked Lists vs Arrays:

· A linked list is a dynamic data structure which means that the memory reserved for the link list can be increased or reduced at runtime. No memory is allocated for a linked list data structure in advance. Whenever a new item is required to be added to the linked, the memory for the new node is created at run time. On the other hand, in case of the array, memory has to be allocated in advance for a specific number of items. In cases where sufficient items are not available to fill all array index, memory space is wasted.
· Since arrays require contiguous memory locations, it is very difficult to remove or insert an item in an array since the memory locations of a large number of items have to be updated. On the other hand, linked list items are not stored in a contiguous memory location, therefore you can easily update linked lists.
· Owing to its flexibility, a linked list is more suitable for implementing data structures like stacks, queues, and lists.

However, there are some downsides to the linked list as well.

· Since each linked list item has to store the reference to the next item, some extra memory is required.
· Unlike Arrays, where you can directly access an item, you cannot access a linked list item directly since the only information you have is the reference to the first item.

Creating a linked list in Python

def make_new_list(self):
 nums = int(input("How many nodes do you want to create: "))
 if nums == 0:
 return
 for i in range(nums):
 value = int(input("Enter the value for the node:"))
 self.insert_at_end(value)

Sets

Sets can be used to organise data and define the interrelationships between different sets of data. This allows you to easily search and filter potentially complex data. Some programming languages have data types which support set-style functionality and this logic can be used to form user permissions.

Set - a collection of distinct objects. Sets can contain anything (e.g. names,
numbers, colours or letters of the alphabet) and may consist of many different
members.
Filter - by using a filter you can include or exclude certain values when running a search.

We usually associate sets with Venn diagrams in which we will have some data in one group and some in another group. There might then be some overlapping.

Common standard algorithms

Developing programs successfully often makes use of standard types of algorithm to store and process data. Although the real-life context of a problem may be different (for example, insurance, education, retail) the techniques that are required are often generic. For example, the need to sort a list of names into alphabetical order could occur in many different business situations.

For this reason, it is a good idea to become familiar with a range of different types of algorithm that will form part of your problem-solving toolkit; that is, techniques you can rely on and apply to new situations.

Common or standard algorithm types include those for sorting, searching, counting
and validation, as well as stacks and queues to implement sorting and searching.

Using stacks and queues to implement sorting and searching

Stacks and queue algorithms are used to implement sorting and searching algorithms.

Stack (LIFO)

A stack is known as a LIFO data structure and has two basic operations: push and pull (sometimes known as pop).

Stacks are vital in any computer’s operating system and are a common tool for the programmer when developing solutions.

Stacks are frequently used to store the return address locations when functions, subroutines or procedures are called within a program.

FIFO

Consider a printer queue. Users on a network send their documents to a shared printer. These enter a queue and the first one in is the first one out (FIFO).

Sorting

Sorting is a basic process whereby items are ordered according to the value of some attribute. For example, sorting video games in order of their titles or organizing a music library according to artist.

We need to know several sorting algorithms which vary according to their complexity.

The most common ones are:

Bubble sort
Insertion sort
Quicksort

Bubble sort

This is the easiest sorting algorithm to understand. In a bubble sort a data item is physically moved through a list until it reaches its correctly sorted position. This is achieved by comparing each pair of neighboring items and swapping their position as necessary. This process may need many passes along the list of data.

Look at the pseudocode below:

BEGIN
	size = length (data)
	REPEAT
		swapped = false
		FOR index = 1 to size – 1
			IF data[index + 1] < data[index] THEN
				swap data[index + 1], data[index]
				swapped = true
			ELSE
				No swap needed
			ENDIF
		NEXT index
	UNTIL swapped = false
END

Now consider data in the above code contains [14, 8, 9, 21, 17, 20, 5, 3]

Can you try to fry run the code with this set of data?

Insertion sort

This is very different from the bubble sort in that it maintains a second data list which contains the sorted data.

The code below demonstrates the insertion sort.

BEGIN
	size = length (data)
	hole = 0
	insertvalue = 0

	FOR index = 0 TO size – 1

		Insertvalue = data[index]
		Hole = index

		WHILE hole > 0 AND data[index – 1] > insertvalue
			swap data[hole], data[hole – 1]
			decrement hole
		ENDWHILE

		Data[hole] = insertvalue

	NEXT index

END

Using this data – [1, 10, 4, 5, 19] – do a dry run of this coding.

Both the bubble sort and the insertion sort are not suitable for large data. They would take too long to carry out the sort.

Quicksort

Compared to the previous two sorting routines, the Quicksort is the most complex to understand because it involves recursion.

Recursion occurs when a procedure, subroutine or function calls itself.

The Quicksort has two phases:

1 The partition phase works out how to divide the data into two partitions
2 The sort phase does the actual sorting of each smaller partition

How it works:

The data to be sorted will be in an array. For example:

	6.4
	3.5
	9.2
	1.1
	8.9
	2.5
	7.5
	4.2

1. Choose last item and store its value in PIVOT
2. Look at each element in the array and compare it with the PIVOT element
3. If it is <= PIVOT then append it to the left half array
4. Else append it to the right half array
5. Note – the PIVOT element is not included in the 2 halves
6. When both sub-arrays have been complete sort them
Note – any sort routine may be used to do this
7. Now concatenate the two halves

[image:]

[image:]

[image:]
[image:]

[image:]

Searching

Another basic algorithm enables data to be searched for a particular value. There are two basic types of search: linear (sometimes called serial) and binary.

Linear search

This is the basic of all searches. A linear search will start with the first element and compare it with the target value until it either finds the value in the list or it is not in the list.

The linear search is used on small data lists or when the list is unsorted.

Example

Date [5, 7, 15, 29, 22, 13, 34, 6, 19, 17]

If we search for 22 in this list, the algorithm will compare it with 5,7,15,29 until it finds it at position 5.

If the number 27 is searched for then the algorithm will compare 27 with each element until it gets to the end of the list since 27 is not in the data list.

The pseudocode below uses a sentinel value to indicate that the search value has not been found. This is because we do not want to return a value of 0 unless the item has been found at position 0.

BEGIN
	INPUT search
	size = length (data)
	found = -99
	FOR index = 0 TO size -1
		IF data[index] = search THEN
			found = index
			BREAK
		ENDIF
	NEXT index
	OUTPUT found
END

Dry run this with data set to [9,2,3,1,6]

Binary search

Binary searches can only operate on sorted data. If the data is unordered then it will have to be sorted before the binary search can be used.

BEGIN
	data = [4,6,19,23,56,72,73,80,102,104]
	found = false
	midpoint = 0
	
	INPUT search
	lower = 0
	upper = size – 1
	
	WHILE found = false
		IF upper < lower THEN
			BREAK
		ENDIF

		midpoint = lower + (upper – lower) / 2

		IF data[midpoint] < search THEN
			lower = midpoint + 1
		ENDIF

		IF data[midpoint] > search THEN
			upper = midpoint - 1
		ENDIF

		IF data[midpoint] = search THEN
			found = true
			BREAK
		ENDIF
	ENDWHILE

	IF found = false THEN
		OUTPUT search “ was not found”
	ELSE
		OUTPUT search “ was found at position “ midpoint
	ENDIF

END

Task

1. Try to explain in simple English how this algorithm operates.
2. What is the purpose of each variable?
3. Dry run this code using the data list in the pseudocode

D – Types of Programming and Markup Languages

There are 3 main types of computer programming: procedural, object orientated and event driven. Each solves problems in different ways and so has different uses.

Procedural programming

Languages such as C, Perl and Python are common procedural languages and are often the first one learned by programmers.

They are often considered to be general purpose tools and can be used to create many different types of application.

A procedure is a small section of a program that performs a specific task. Procedures can be used repeatedly throughout a program.

Using procedures makes program code is easier to read and understand when it is broken up into smaller sections. By breaking a program up into these sections, or procedures, code can be made shorter and simpler.

When writing programs it is very easy to end up with long-winded, repetitive code which is hard to understand and debug. This is because the same task often needs to be carried out in different places in the program. Procedures can be used throughout a program, making them simpler and quicker to code.

Using procedures has an added benefit. If something needs to be changed in a procedure, it only needs to be changed once, within the procedure code. This change will then appear wherever the procedure is used in the program. If procedures weren’t used, the code would have to be amended at every point that it appears in the program.

Procedures can make code shorter, simpler and easier to write.
Consider this excerpt from a Python game program which prints player information on the screen:

print("Your score: " + str(score))
time.sleep(1)
print("High score: " + str(high_score))
time.sleep(1)
print("Lives remaining: " + str(lives))
time.sleep(1)

The program uses six lines of code to print out the player information.
Suppose you wanted to print out the player information at these different points in the game:

· at the end of a level
· when the player loses a life
· when the player beats the high score
· when the game is over

You would need to repeat those six lines of code on each occasion, giving a total of 24 lines of code simply to display the player information:

End of level
print("Your score: " + str(score))
time.sleep(1)
print("High score: " + str(high_score))
time.sleep(1)
print("Lives remaining: " + str(lives))
time.sleep(1)

Lose a life
print("Your score: " + str(score))
time.sleep(1)
print("High score: " + str(high_score))
time.sleep(1)
print("Lives remaining: " + str(lives))
time.sleep(1)

New high score
print("Your score: " + str(score))
time.sleep(1)
print("High score: " + str(high_score))
time.sleep(1)
print("Lives remaining: " + str(lives))
time.sleep(1)

Game over
print("Your score: " + str(score))
time.sleep(1)
print("High score: " + str(high_score))
time.sleep(1)
print("Lives remaining: " + str(lives))
time.sleep(1)

This is repetitive and a waste of time. It would be better to write a procedure and simply run that procedure whenever it is needed.

Writing a procedure is extremely simple. Every procedure needs:

· a name
· the program code to perform the task

Writing a procedure in Python

Consider this excerpt from a Python game program which prints player information on the screen:

print("Your score: " + str(score))
time.sleep(1)
print("High score: " + str(high_score))
time.sleep(1)
print("Lives remaining: " + str(lives))
time.sleep(1)

To create a procedure, first give the procedure a name. A good name for the player information procedure could be ‘update_display’. Python uses the statement def to name a procedure. Note the brackets at the end of the procedure’s name:

def update_display():

The procedure code is then written indented beneath the def statement:

def update_display():
print("Your score: " + str(score))
time.sleep(1)
print("High score: " + str(high_score))
time.sleep(1)
print("Lives remaining: " + str(lives))
time.sleep(1)

Our lengthy piece of code which contained several repetitions can now be fully optimized into:

def update_display():
print("Your score: " + str(score))
time.sleep(1)
print("High score: " + str(high_score))
time.sleep(1)
print("Lives remaining: " + str(lives))
time.sleep(1)
End of level
update_display()
Lose a life
update_display()
New high score
update_display()
Game over
update_display()

Object-oriented programming

An object oriented program is based on classes and there exists a collection of interacting objects, as opposed to the conventional model, in which a program consists of functions and routines. In OOP, each object can receive messages, process data, and send messages to other objects.

The four major principles of object orientation are:

· Encapsulation
· Data Abstraction
· Polymorphism
· Inheritance

The cake analogy

[image: Strawberry Tart as a Class]A class definition can be compared to the recipe to bake a cake. A recipe is needed to bake a cake. The main difference between a recipe (class) and a cake (an instance or an object of this class) is obvious. A cake can be eaten when it is baked, but you can't eat a recipe, unless you like the taste of printed paper. Like baking a cake, an OOP program constructs objects according to the class definitions of the program program. A class contains variables and methods. If you bake a cake you need ingredients and instructions to bake the cake. Accordingly a class needs variables and methods. There are class variables, which have the same value in all methods and there are instance variables, which have normally different values for different objects. A class also has to define all the necessary methods, which are needed to access the data.

Some books use other analogies, like e.g. paper pattern and shirts. In this case the paper pattern corresponds to a class and the shirts are instances or objects of this class. Another well liked example is the class "house plans" and the house (or houses) built according to this plan.

Classes, objects and instances
[image: Attributes and Methods]
A class defines a data type, which contains variables, properties and methods. A class describes the abstract characteristics of a real-life thing. We avoided the expression "object" in the previous sentence and used "thing" instead, because an object is used as an expression in OOP as well as to denote an instance of a class. With the expression "real-life" thing we have concepts (classes) like "bank account" or "account holder" in mind. The abstract characteristics of a "thing" include its attributes and properties and the thing's behaviour, i.e. the methods and operations of this thing.

There can be instances and objects of classes. An instance is an object of a class created at run-time. In programmer vernacular, a strawberry tart is an instance of the strawberry recipe class. The set of values of the attributes of a particular object is called its state. The object consists of state and the behaviour that's defined in the object's classes. The terms object and instance are normally used synonymously.

As we have said, classes usually contain attributes and properties and methods for these instances and properties. Essentially, a method is a function, but it's a special kind of function which belongs to a class, i.e. it is defined within a class, and works on the instance and class data of this class. Methods can only be called through instances of a class or a subclass, i.e. the class name followed by a dot and the method name.

In our illustration we show an example of two classes "Account" and "Account Holder". The data of the "Account Holder" consists, for example, of the Holder Surname and Prename, Address, Profession, and Birthday. Methods are "Change of Residence" and "Change of Profession". This model is not complete, because we need more data and above all more methods like e.g. setting and getting the birthday of an account holder.

Encapsulation of data

[image: Encapsulation of Data]Another important advantage of OOP consists in the encapsulation of data. We can say that object-oriented programming relies heavily on encapsulation. The terms encapsulation and abstraction (also data hiding) are often used as synonyms. They are nearly synonymous, i.e. abstraction is achieved though encapsulation. Data hiding and encapsulation are the same concept, so it's correct to use them as synonyms.

Generally speaking encapsulation is the mechanism for restricting the access to some of an object's components, this means that the internal representation of an object can't be seen from outside of the objects definition. Access to this data is typically only achieved through special methods: Getters and Setters. By using solely get() and set() methods, we can make sure that the internal data cannot be accidentally set into an inconsistent or invalid state.

It's nearly always possible to circumvent this protection mechanism: E.g. in C++ by the "friends" mechanism, in Java and Ruby via reflection API or in Python by name mangling.

A method to set private data can also be used to do some plausibility checks. In our example, we can check, if the birthday makes sense, e.g. it's not very likely that a customer is more than are 100 years old. Or we can rule out that a customer with a giro account is less than 14 years old.

Event driven programming

This is a popular programming paradigm for graphical applications. Even-driven programs work by operating in a main loop. This loop is effectively listening for different events to occur. Some events are user generated such as clicking the mouse button or tapping the mobile display to run an application. Some events are system generated such as low battery warnings or low memory messages.

When an event is triggered, a suitable event-handler is executed. This is a program sub-routine called a callback is executed which responds to the event.

Coding for the web

The main language used for web based files is HTML. This is a mark-up language which uses tag codes to specify the content of a web page.

CSS is used to specify the appearance of the content on the page.

HTML and CSS are interpreted code and all browsers can render web pages using the same code.

HTML is a non-dynamic language so in order to facilitate interactivity serverside software such as PhP or Javascript needs to be used.

image4.png

image5.png

image6.jpg
START

tota
counter

¥

total = total*counter
increment counter

Is counter
>value?

image7.png
bom it sonadidgugtioy (iblos! cod

ISBN 0-19-852663-6
HNELINEIINERILIEERI LI

image8.png
0 1 2 3 4 «—{ Index)

Access first three items individually

First three items *

© wiresource.com

image9.png
Next

NODE

Data tems

Next

NULL

image10.png
Sort: 64 35 92 11 89 25 75 42

image11.png
Sort: 64 35 92 11 89 25 75

Pivot = 4.2

image12.png
64 35 92 11 89 25 75
Partition: g’/ Pivot = 42 \

image13.png
Pivot = 4.2

1 Sort (use BubbleSort) 1

image14.png
Concatenate: Pivot = 4.2
11 25 35 64 75 89 92

| |
1125 35 42 84 75 89 92

Sorted 11!

image15.png
Incrodients:

1. fresh strawberries,
34 c. sugar

2 sp, fresh lemon juice.
6 baked tart shells
1112 bsp. comstarch
1. water

114 tsp, vanita

Mthod:
Wash and hull berres. Mix sugar,
comstarch and saltin a small
saucepan.

Arenge whoe strawberries,
Stom end down

intart shels. Spoon glaze
overthe to.

image16.png
Surmame.
Prename

Adress
Profession
Birthday

Ghange of Residence
Change of Profession

> Attributes,

‘ Properties

Holder
Number

Credit Line
Balance.

Holder of the right

of disposal

image17.png
Account Holder

image1.png

image2.png

image3.png
“

)
YN
7/I\V

Y

AT 2
=
7\

v
%

S \//Y \— 4
% LS‘

v
“
»

\4» A

