Unit 1.2.2 Applications Generation		
		Created by TheLittleJedi
		Page 2 of 6
Application Software: (a program or a group of programs designed for end users, which are people who actually uses a particular product)
General Purpose Software: This is software that can be used for many purpose. For example: Word.
Special Purpose Software: This performs a single specific task or set of tasks. This includes hotel booking systems to fingerprint scanning systems.
	Type of Application Software:
	Examples:

	Communication Software:
	· Includes email, instant messaging, social media and video conferencing. For example: ‘Snapchat’ & ‘Outlook’

	Computer Aided Design: (CAD)
	· Software used to produce highly detailed technical drawings such as building plans or when designing a car’s engine. For example: ‘AutoCAD’

	Database Management Systems:
	· Used to create and manage complex, relational databases. For example ‘InterBase’

	Digital Graphics and Animation:
	· The art of creating of moving images by the use of the computers. For example ‘Adobe Photoshop’ & ‘Blender’

	Enterprise Resource Packages: (ERP)
	· An integrated software package used in industry to share data between all areas of a business including managing orders, stock, payroll and company finances

	Entertainment Software:
	· A group of software programs that include, media players and games.

	Office Software:
	· PowerPoint, Word, Spreadsheet etc.



“Off-The-Shelf” Software: This is software that is ready to use. It is standardized software applications that are mass-produced and available to the general public, and fit for immediate use.
Bespoke Software: This is custom-built software that is made to address a specific requirement of a business.
	Off The Shelf Software:
	Bespoke Software:

	Less expensive since the cost is shared among all the other people buying the package 
	More costly and requires expertise to analyze document requirements

	May contain a lot of unwanted features, and some desirable but non-essential features may be missing.
	Features customized to user requirements and other features can be added as needs arise.

	Ready to be installed immediately 
	May take a long time to develop

	Well documented, well-tested and generally error-free
	May contain errors which do not surface immediately.




Utility Software: - Software that is designed to perform a specific task to extend or aid the operating system.
	Examples of Utility Software:
	Definition:

	Anti-Virus/Anti-Malware:
	Used to prevent, detect and remove malware/viruses

	Backup Software:
	Software that is used to perform a backup. This is the creation of supplementary exact copies of files or databases.

	Compression Tools:
	Compression is the method used to make files smaller by reducing the number of bits. This is software that can compress and decompress various file types.

	Disk Analysers:
	A diagnostic tool that checks the condition of a computer’s hard drive and reports on available space.

	Disk Defragmenters:
	Reorganises data on a hard disk drive (HDD) so related data is grouped together in order to improve search and load times

	Disk Partitioners:
	Used to split a single storage medium into multiple volumes. Allows a user to separate data and use multiple file systems on a single disk.

	Encryption Software: 
	A method of protecting data by scrambling the contents using algorithm (which makes use of a key) so that data cannot be read unless the correct key is provided. Encryption can be used during data transmission or to protect stored data.

	File Managers:
	A program used to organize, list and locate files and directories on a computer

	Firewall:
	Protects a network or system from unauthorized access with a firewall

	Network Utilities:
	These are software utilities that are designed to analyze and configure various aspects of computer networks. For example, ‘Ping’. The PING utility tests connectivity between two hosts.

	Package Managers:
	A collection of software tools that automates the process of installing, upgrading, configuring, and removing computer programs for a computer’s operating system in a consistent manner.






[bookmark: _GoBack]Open source software: is software released where the source code can be accessed and can be modified to a user’s will.
	Advantages of Open Source Software:
	Disadvantages of Open Source Software:

	Usually Free. Cost of buying is zero or very low – although payment may still be needed for installation or training
	Small projects may not get regular updates

	Often made for the greater good, not profit. This is because it benefits everyone and encourages collaboration.
	Can be buggy.

	Flexible. Software can be adapted by the user to fit their needs
	May have limited or no user documentation (user documentation is designed to assist users to help them use the product)

	Open Source has a wider pool of collaborators compared to Proprietary Software. As a result, the community programmers can be more creative and innovative than the programmers of one company
	No warranties if something goes wrong

	Popular software is often very reliable of being secure as any problems are quickly solved by the community. Transparent bugs are openly acknowledged and dealt with..
	No customer support (although the community will often make up for this) 

	
	Companies using open-source code to make custom software may not want competitors to see their source code, but they have no choice.


 
Proprietary Software (Closed Software): is software where only the compiled code is released and the source code is closed. This type of software restricts the modification of the software. It is sold in the form of a license, which is required to use the software.
	Advantages Of Proprietary Software:
	Disadvantages Of Proprietary Software:

	Comes with warranties, documentation and customer support
	Can be expensive

	Should be well-tested and reliable as the company’s reputation depends on this. Fixes and updates will come regularly 
	Software may not exactly fit a user’s needs and they can do anything about it

	Usually cheaper for companies then developing their own custom-built software.
	Software Companies may not maintain older software after warranties expire. They will want people to buy their latest product.

	There can be training courses for proprietary software due to a large user base and software popularity.
	Software company or developer holds the copyright of the program. So users will not have access to the source code. This means it cannot be modified or sell the program to other people.

	
	Generally, has restrictions in how the software can be used. For example, a license may specify only one concurrent user or only permit 50 users on one site.



High-Level Language: The source code is easy for humans to write, but computers need to translate it into machine code before they can read and run it
	High Level Language
	Low Level Language

	One instruction of high level code represents many instructions of machine code.
	One instruction of assembly code usually only represents one instruction of machine code.

	The same code will work for many different machines and processors.
	Usually written for one type of machine or processor. Won’t work on any others.

	The programmer can easily store data in lots of different structures, for example arrays.
	The programmers needs to know the internal structure of the CPU and how it manages memory.

	Code is easy to read, understand and modify.
	Code is very difficult to read, understand and modify.

	Must be translated into machine code.
	Commands in machine code can be executed directly without the need for a translator.

	You don’t have much control what the CPU actually does so programs will be less memory efficient and slower.
	You control exactly what the CPU does and how it uses memory so programs will be more memory efficient and faster.



Low-Level Language: Hard for humans to understand to read and write but easier for a computer to run

	Compiler:
	Interpreter:
	Assembler:

	Translates all of the source at the same time and creates one executable file.
	Translate and runs the source doe one instruction at a time, but doesn’t create an executable file
	Uses low level source code to translate assembly code into machine or object code.

	Only needed once to create a executable file.
	Needed every time you want to run the program
	Each type of processor will have a different assembler.

	Returns a list of errors for the entire program once compiling its complete.
	The interpreter will return the first error it finds and then stop. This is useful for debugging.
	Used for direct hardware manipulation, access to specialized processor instructions to address critical performance issues.

	Once compiled, the program runs quickly, but compiling can take a long time.
	Programs will run more slowly because the code is being translated as the program is running.
	Assembly code is a low-level language, with each instruction in assembly code almost always being equal to one machine code instruction.








Stages of Compilation:
1. Lexical Analysis: This is the first phase of a compiler. It takes the modified source code from language preprocessors that are written in the form of sentences. It then breaks these syntaxes (e.g. variable names) into a series of tokens, by removing any white space or comments in the source code. It will also perform simple error-checking. For example: it will detect an attempt to assign an illegal value to a constant, such as a value of the wrong type or one that causes overflow or underflow.
2. The Symbol Table: Contains an entry for every keyword and identifier in the program. The exact format of the entries in the table will vary from compiler to compiler. It will typically include:
· The identifier or keyword
· The kind of item (variable, array, procedure, keyword)
· The type of item (integer, string, float)
· The run-time address of the item, or its value if it is a constant.
· A pointer to accessing information. For example, a pointer to each of the parameters given in a procedure or function.
The Lexical analyzer spends a great proportion of its time looking up the symbol table. This means it has an important effect on the overall speed of the compiler. The symbol table must be organized in such a way that it can be accessed quickly as possible.
· Hash Table: This is an example of a Symbol Table, where the keyword or identifier is ‘hashed’ to produce an array subscript. However, collisions (synonyms) can occur. The best way to handle them is to store the synonym in the next available free space in the table.
3. Syntax Analysis: This receives and accepts the output from the Lexical Analysis. It is the process of determining whether the sequence of input characters, symbols, items or tokens form a valid sentence against the grammar and rules of the structure of the programming language.
· Parsing: This is the task of systemically applying the set of rules to each statement to determine whether it is valid.
· Semantics Checking: Semantics define the meaning rather than the grammar of the programming language. It is possible to write a series of syntactically correct statements which do not obey the rules for writing a correct & functional program. For example: Assigning a real (float) value to an integer variable or using a real number instead of an integer as the counter in a FOR loop.
4. Code Generation: This is the last stage of compilation that occurs after syntax analysis. This when machine code is generated. It will produce executable code, which is equivalent to the source program. Variables & Constants are given location addresses.
· Optimisation: This occurs during code generation. These Code Optimisation Techniques attempt to reduce the execution time of the object program, which increases processing speed when the program is executed. The machine code is checked and made as efficient as possible. It will try and reduce the number of unneeded instructions. However, it will increase compilation time. It may also produce unexpected results. 


Linkers and Loaders: Once a program has been compiled, any separately compiled subroutines must be linked into the object (machine) code.
· Linkers: This combines the complied program code with the compiled library routine code all into one executable program. It puts appropriate machine addresses in all the external ‘call’ and ‘return’ instructions, so that the modules are linked together correctly.
· Loaders: This is part of the operating system that loads the executable program and associated libraries into memory and handles addresses before the program is run.
Libraries: These are ready-compiled programs, which are grouped in software libraries. These can be loaded and executed when required.
· They can be standard pieces of software which often perform common tasks, such as sorting and searching.
· Routines are compiled and are made to fit into the modularization of algorithms.
· They are pre-tested (tried & tested) so they are relatively error free.
· They are pre-written. Thus means that they are ready and available to be used by a programmer. This can save time when writing a program.
· They can be used multiple times to reduce repeated code.
· They may allow the programmer to use code, which has been written in a different source language.
· They are most likely written by expert programmers so other programmers can use their expertise. 
