| O|[

> O OO OO0 O O

OCR

Oxford Cambridge and RSA

A Level Computer Science
H446/02 Algorithms and programming

Practice paper — Set 2
Time allowed: 2 hours 30 minutes

Do not use:
* a calculator

(First name

(Last name

Centre Candidate
number number

N

INSTRUCTIONS

Use black ink.

Complete the boxes above with your name, centre number and candidate number.
Answer all the questions.

Write your answer to each question in the space provided. Additional paper may be
used if required but you must clearly show your candidate number, centre number and
question number(s).

Do not write in the barcodes.

INFORMATION

The total mark for this paper is 140.

The marks for each question are shown in brackets [].

Quality of extended responses will be assessed in questions marked with an
asterisk (*).

This document consists of 28 pages.

© OCR 2016 Practice paper OCR is an exempt Charity
DC (SC/SW) 145304/1 Turn over

2

Answer all the questions.

Section A

1 Abinary search tree, colour, stores data about colours that are entered into a computer.

(@) A binary search tree is one example of a type of tree.

© OCR 2016

(i) State the main features of a tree.

H446/02

3

(b) The current contents of colour are shown.

© OCR 2016

Black

Add the following colours to the tree above in the order written:

Green

Blue

Brown

White

Magenta

Indigo

Orange

H446/02

Purple

[4]

Turn over

4

(c) Asecond binary search tree, numbers, stores numbers that are entered into a computer. The
contents of the tree are shown below:

50

45 76

VAN yd

20 48 60

AN /

98

S

92

(i) Explain, using the binary search tree numbers as an example, how a depth-first
(post-order) traversal is performed.

© OCR 2016 H446/02

5

(ii) Explain, using the binary search tree numbers as an example, how a breadth-first
traversal is performed.

© OCR 2016 H446/02 Turn over

6

(d) The binary search tree, values, is stored as an array of nodes. Each node has a left pointer,
a right pointer and the data being stored. The following data is entered in the order shown
below:

68 30 73 22 1 90 70

The following table shows the data stored in the array. The Root Pointer stores the node
number of the first element in the tree.

Root Pointer Array Index | Left Pointer | Data R'.ght
Pointer
0 0 1 68 2
1 30
2 73
3 22
Free Pointer 4 1
5 90
7
6 70
Table 1.1

(i) Complete the remaining Left Pointer and Right Pointer values for the data entered in
Table 1.1. Where the pointer is null, leave the space empty. [3]

(ii) State the purpose of the Free Pointer.

.. [1]
(iii) The following data is added to the array in the given order:
6 100
Add the new nodes to Table 1.1 and update any relevant pointers. [4]

© OCR 2016 H446/02

7
BLANK PAGE

© OCR 2016 H446/02 Turn over

2

8

Fig. 2.1 shows the flight paths between a country’s airports. The value in bold beneath each node
is the heuristic value from E.

Fig. 2.1

(a) State the full name of the data structure shown in Fig. 2.1.

(b) The structure in Fig. 2.1 is searched using the A* algorithm making use of the heuristic values.

(i) State what the heuristic values could represent in Fig. 2.1.

© OCR 2016 H446/02

9

(iii) Perform an A* algorithm on the data structure in Fig. 2.1 to find the shortest distance
between H and E. Show each step of the process, and the calculations performed for
each node visited.

© OCR 2016 H446/02 Turn over

10

(iv) Give one decision that is made in the A* algorithm, and describe the effect of this decision
on the next step(s) of the algorithm.

[I=Ye 1< (o] o I PO T TR

(c)* A programmer is interested in using concurrent processing to perform a searching algorithm.

Explain how concurrent processing could be used in searching algorithms, and evaluate the
benefits and trade-offs from implementing concurrent processing in a searching algorithm.

© OCR 2016 H446/02

11

3 Dexteris leading a programming team who are creating a computer program that will simulate an
accident and emergency room to train hospital staff.

(a) Identify two features of the problem that make it solvable by computational methods.

(b)* Dexter has used decomposition and abstraction during the analysis of the problem.

Explain and evaluate the use of decomposition and abstraction in the creation of this
simulation.

© OCR 2016 H446/02 Turn over

12

(c) Dexter has been told he should make use of caching in the simulation.

Describe what is meant by caching and explain how caching can be used within the simulation.

(d) Two of Dexter’s programmers have developed different solutions to one part of the problem.
Table 3.1 shows the Big O time complexity for each solution, where n = the number of data

items.
Solution A Solution B
Time O(n) O(n)
O(k")
Space (where k > 1) O(log n)

Table 3.1
(i) The Big O time complexity for time of each solution is O(n).

Explain what is meant by time complexity, with reference to the solutions’ Big O time
complexity.

© OCR 2016 H446/02

13

(ii) Name the space complexity for each solution:
RS To] 11 o] o NPT
S To] V1 (o] oI = OO PP TP PRP

(iii) Explain, with reference to the Big O complexities of each solution, which solution you
would suggest Dexter chooses.

.. [4]
(e) Dexter’s team is using an integrated development environment (IDE).
Describe how the programmers could make use of the following IDE tools:
BreakpOiNtS....cooo o
) (=T o] o] 0T IRUTTT O S PP SRR PP PSSP PPPPPPPPR
[4]

© OCR 2016 H446/02 Turn over

14

4 A program needs to sort an array of lowercase strings into descending alphabetic order. An
example of the data is shown in Fig. 4.1.

sheep

rabbit

dog

fox

cow

horse

cat

deer

(@) Show how a bubble sort would sort the data in Fig. 4.1.

© OCR 2016

Fig. 4.1

H446/02

15

(b) The algorithm will make use of a function, contains, that compares two strings and checks

© OCR 2016

if the second string contains the first string. For example, calling the function with (" fox",
"foxhound") this would return true.

The function needs to:

* Take two strings as parameters, stringl and string?2

e return true if stringl is contained within string2, or both strings are identical
e return false if stringl is not contained within string2

Write, using pseudocode, the function contains.

Annotate your pseudocode with comments to show how it solves the problem.

H446/02 Turn over

16

(c) (i) A merge sort could have been used instead of a bubble sort.

Describe how a merge sort differs from a bubble sort.

.. [4]

(ii) Name two sorting algorithms, other than a bubble sort and merge sort.
ettt ettt ee e tee e eeee e teeeateeeaateeeateeeanteeeanteeeanteeeanteeeanteeeaneeeeaneeeaaneeeeaneeeeaneeeannes
TSP
[2]

(d) Show how a binary search would be performed on the array shown in Fig. 4.2 to find the
value ‘duck’.

wolf monkey lion iguana goat giraffe frog elephant duck

Fig. 4.2

© OCR 2016 H446/02

17

Section B

5 Kim is writing an object-oriented program for a four player board game. The board has 26 squares
that players move around, as shown in Fig. 5.1.

Start 1 2 3 4 5 6 7
25 8
24 9
23 10

Deck
22 1
21 12
20 19 18 17 16 15 14 |Missa
turn
Fig. 5.1

Each player takes it in turn to roll two dice. They then move that number of spaces on the board.
If they roll a double (both dice have the same value), they then take a card from the deck. The
deck contains 40 cards that each include a sentence (such as “You have won the lottery”). The
sentence on the card determines if money is given or taken away from the player.

Name = Squirrel
Level =0

ImagelLink: squirrel.omp

Level 0 stop = £10
Level 1 stop = £50
Level 2 stop = £100
Level 3 stop = £500

Cost = £1000

Owned = free

Fig. 5.2

© OCR 2016

Each square (apart from Start and Miss a turn) has an
animal associated with it that the player can purchase, if it
has not been purchased already, for example square 6 has a
Squirrel. Fig. 5.2 shows an example of one of these animals.
Once a player has purchased the animal, any opposing
player which subsequently lands on the square/animal has
to pay a fine.

Each animal can be upgraded, with each upgrade the
game charges more each time a player stops on them. For
example, with no upgrade the level 0 squirrel costs £10
when a player stops on it. If £1000 is paid to upgrade, the
squirrel is then a level 1 animal and now charges £50 for a
stop.

The cost to purchase and upgrade the animal is the same.
Each animal can be upgraded to a maximum of level 3.
When a player lands on, or passes the square ‘Start’

(position 0), they receive £500. If they land on ‘Miss a turn’
(position 13), they miss their next turn.

H446/02 Turn over

18
(@) (i) Aclass, Player, stores the player’s ID (P1, P2, P3, P4), their current board position and
the amount of money they have.

Fig. 5.3 shows a class diagram for P1ayer. A class diagram describes a class. It contains
the class name, followed by the attributes, then the methods.

Player

playerID: STRING
boardPosition: INTEGER
money: INTEGER

constructor ()
getPosition ()
setPosition (position)
getMoney ()

setMoney (amount)

Fig. 5.3

The constructor creates a new instance of Player, taking the player’s ID as a parameter.
The board position is set to 0, and money to £2000.

Write, using pseudocode, the constructor method for the P1ayer class.

© OCR 2016 H446/02

© OCR 2016

19

(ii) A class, Animal, define the attributes and methods for the animals stored in each

square.

Fig. 5.4 shows a class diagram for Animal.

Animal

name: STRING
currentLevel: INTEGER
cost: INTEGER

LO: REAL

L1: REAL

L2: REAL

L3: REAL

imageLink: STRING
setSquare: INTEGER
owned: STRING

constructor ()
getCost ()

upgrade (player)
getCurrentLevel ()
setOwned (player)
getOwned ()
getAmountToCharge ()
getName ()

Fig. 5.4

The constructor takes the required data as parameters and then sets currentLevel
to 0, and assigns the parameters as the remaining attributes for the new object.

Write, using pseudocode, the constructor method for the Animal class.

H446/02

Turn over

(iii) Write, using pseudocode, the code to create an instance of Animal for the Squirrel
shown in Fig. 5.2, positioned on square number 6, for the constructor function you wrote
in part (a)(ii).

© OCR 2016 H446/02

21

(b) The board is stored as a 1D array, board, of data type Animal. The spaces at 0, and 13, are
left as empty elements that are checked using separate functions.

(i) Complete, using pseudocode, the function to:

. Roll both dice

* Move the player, the dice number of spaces

. If a double is rolled, calls the procedure pickDeck

* Adds £500 if they have passed or landed on Start

* Calls the procedure missAGo if they land on space 13 or
+ Calls the procedure checkAnimal

. Return the new position

function playerMove (currentPlayer)

dicel = random(1l, 6)

dice2 = random(1l, 6)

boardPosition =ttt + dicel + diceZ2
o == dice2 then

pickDeck (currentPlayer)
endif
if position > 25 then
currentPlayer.setMoney (currentPlayer.getMoney () +)
POSition = POSItion = ittt et e et e e
endif
1f POSItion == i e e e e e e then
missAGo (currentPlayer)
elseif position != 0 then
checkAnimal (currentPlayer)
endif

endfunction

(6]

© OCR 2016 H446/02 Turn over

22

(ii)* The parameter currentPlayer from part (b)(i) can be passed by value or by reference.

Explain the difference, benefits and drawbacks between passing by value and by reference.
Recommend which should be used for currentPlayer, justifying your decision.

© OCR 2016 H446/02

23

(c) The deck is stored as a zero-indexed 1D array, named deck, of type Card.

© OCR 2016

The class diagram for Card is shown in Fig. 5.5.

Card

textToDisplay: STRING
amount: INTEGER

constructor ()
getTextToDisplay ()
getAmount ()

Fig. 5.5

The array, deck, is treated as a queue, with a variable, headPointer, identifying the first
card in the deck. When a card has been used, the head pointer increases to move to the next
position. If the end of the deck is reached, the head pointer returns to 0 and starts again.

The procedure pickDeck:

takes the current player as a parameter

outputs the text to be displayed from the first card in the queue
adds or subtracts the amount to/from the current player’s money
increases the head pointer

Write, using pseudocode, the procedure pickDeck.

H446/02 Turn over

(d)

© OCR 2016

24

The procedure checkAnimal:

e Takes the current player as a parameter

* Accesses the data for the animal at the player’s position in the array board

e Ifthe animal is free, asks the player if they would like to purchase the animal and outputs
its name and cost, if they choose to buy the animal, it calls the procedure purchase ()
with the player and animal as parameters

e [fthat player owns the animal, and it is not at level 3, it asks if they would like to upgrade
the animal

e Ifthey would like to upgrade, it calls the method upgrade for that animal with the current
player as a parameter

. If a different player owns the animal, it calls the method getAmountToCharge () for
that animal, sending this value and the current player as parameters to the procedure
chargeStay ()

Write, using pseudocode, the procedure checkAnimal. [10]

H446/02

END OF QUESTION PAPER

© OCR 2016 H446/02

26
BLANK PAGE

© OCR 2016 H446/02

27
BLANK PAGE

© OCR 2016 H446/02

28

OCR

Oxford Cambridge and RSA

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders
whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright
Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible
opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a
department of the University of Cambridge.

© OCR 2016 H446/02

